

Course Module Department of Animal Science Faculty of Animal Science Universitas Brawijaya

Module name	Genetics
Module level	Undergraduate Program
Code	PEP60006
Subtitle	-
Courses	-
Semester(s)	2
Person responsible	
for the module	
Lecturer	1. Prof. Dr.Ir.Sucik Maylinda, MS.
	2. Prof.Dr.Ir.Luqman Hakim,MS.
	3. Prof. Dr.Ir.Sucik Maylinda,MS.
	4. Prof.Dr.Ir.V.M.Ani Nurgiartiningsih, MSc.
	5. Prof.Dr.Ir.Gatot Ciptadi, DESS. IPU, ASEAN Eng.
	6. Dr.Ir.Agus Budiarto,MS.
	7. Dr Ahmad Furqon, SPt.
Language	Indonesian and English
Relation to	Compulsory/ Elective
curriculum	
Type of	Contact hours and class size separately for each teaching method: course,
teaching,	structured assignment, etc.
contact hours	
Workload	Course: 90.67 hours/semester
Credit points	2 SKS / 3.40 ECTS
Requirements	-
according to the	
examination	
regulation	
Recommended	Biology, Animal Anatomy and Physiology, Biochemistry
prerequisites	
Module	ILO-4: Capability to develop knowledge and comprehensive mindset based
objectives/inte	on Animal science and industry
nded learning	ILO-6: Proficient in biology, physiology, animal nutrition, breeding, farm
	management, and implementation in Animal Science
	Objectives: This course consists of understanding the basics of inheritance,
	as well as exploring events in nature, especially in the field of animal science
	from a genetic aspect. Individual and group assignments will be given to
	practice the ability to solve problems of inheritance in animals. Topics that

	will be discussed are: history and development of Genetics, Mendelian Law
	and Inheritance Patterns of Monohybrid and Dihybrid Traits, Deviations of
	Mendel's Law, Genetic Matter (Cells, Chromosomes, Genes, RNA and DNA),
	Abnormalities due to chromosomal abnormalities, Sex Determination,
	Sequencing and Cross Moving, Multiple Alleles, Probability theory, Basis of
	population genetics, Polygen, and Basis of Genetic engineering.
	Knowledge: able to explain and discuss various genetic science theories and
	genetic materials.
	Skills: Cognitive- able to explain the genetic science theories.
	Phsycomotoric- able to analyze and present the meaning of genetics
	theories, population genetics, and genetic manipulation.
	Competences: able to explain and apply genetic science the field of animal
	science.
Content	Courses:
	1. Able to study and understand various theories of genetic science
	2. Able to understand and follow the development of genetic science and
	its application in the field of animal science
	3. The topics include:
	4. Introduction
	5. Mendel's Law (Inheritance of monohybrid and dihybrid)
	6. Mendel's Law Deviations
	7 Genetic Material (cells chromosomes genes DNA and RNA)
	8 Mutations
	9 Sex determination sequencing and crossing over
	10 Dual alleles
	11 Polygen Qualitative and quantitative characteristics
	12 The theory of opportunity
	13. Introduction to nonulation genetics
	14. Changes in gene frequency and Hardy Weinberg's Law
	15. Introduction to genetic manipulation
Study and	1. Midtorm oyam
ovamination	2. Final torm oxam
roquiromonts and	2. Structured assignment and quiz
forms of	4. Group assignment
ovamination	4. Group assignment
examination	How to score:
	Nidtorm over 25%
	- Middenn exam 55%
	- Final term exam 55%
	- Structured assignments 15%
	A : $80 < Final Score \le 100$
	B+ : 75 < Final Score ≤ 80
	B : 69 < Final Score ≤ 75
	C+ : 60 < Final Score ≤ 69

	C : 55 < Final Score ≤ 60
	D : 50 < Final Score ≤ 55
	D+ : 44 < Final Score ≤ 50
	E : 0 < Final Score ≤ 44
Media employed	Projector and screens, Zoom application, Google Classroom, e-book, WA
	Group
Reading list	 Gardner E.J. and D.P. Snustad. 1981. Principles of Genetics. 6th Ed. John Wiley & Sons. Singapore. Gatot C., A. Budiarto, Aulaniam, Y. Oktanela. 2019. Genetika, Pemuliaan
	 dan Peternkan-Veteriner. Maylinda, S. 2011. Genetika dan Genetika Populasi. Diktat mata kuliah. Fakultas Peternakan, Universitas Brawijaya, Malang. Maylinda, S. 2011. Pengantar Pemuliaan Ternak. Buku Ajar, Penerbit: UB
	Press. 5. Minkema, D. 1993. Dasar Genetika dakam Pembudidayaan Ternak. Cetakan Kedua. PT Bhratara Niaga Media, Jakarta.