Course Module Departement of Animal Science Faculty of Animal Science Universitas Brawijaya | Module Name | Animal Breeding | |-----------------------------------|---| | Module Level | Undergraduate Study Program of Animal Science | | Code | PEP60008 | | Subtitle | - | | Courses | Animal Breeding | | Semester (s) | 5 | | Person responsible for the module | - | | Lecturer | Prof.Dr.Ir. Luqman Hakim, MS. | | | Prof. Dr.Ir. Sucik Maylinda, MS. | | | Prof.Dr.Ir.V.M. Ani Nurgiartiningsih, MSc. | | | Prof.Dr.Ir. Gatot Ciptadi, DESS. IPU, ASEAN Eng. | | | Dr.Ir. Agus Budiarto, MS. | | | Dr Ahmad Furqon, SPt. | | Language | Bahasa Indonesia, English | | Relation to curriculum | Study Program: Animal Science | | | Specialization: Animal Production | | | Type: Compulsory | | Type of Teaching contact hours | Lectures are conducted for 2x50 minutes for 14 meetings (Offline) or 1x50 minutes for 14 meetings (Online) Practical works are conducted for 1x50 minutes for 14 meetings (Offline/Online) Exercises are conducted for 2x before Midterm Exam and 2x after Midterm Exam Self-structured assignments are conducted 1x before Midterm Exam and 1x after Midterm Exam Quizzes are conducted 1x before the Midterm Exam and 1x after the Midterm Exam Group presentations are conducted 1x before the Midterm Exam and 1x after the Midterm Exam | | Workload | Courses: 90,67 hours/semester Practical: 1,70 hours/semester | | Credit Weight | 3 credits or 5.1 (ECTS) | | Requirements according to the | - | | examination regulations | | | Recommended prerequisites | - | | Requirements for Passing the | - | | Course | | | Requirements for Passing the | - Attendance >80% | |------------------------------|---| | Course | The final score of all the components of the PBM | | Course | evaluation >44 | | | The final score component: | | | – 30% Midterm Exam | | | | | | - 30% Final Exam | | | - 20% Practicum | | | 10% Structured Assignments and quiz | | | – 10% Group Assignments | | | A:80 < Final Score ≤ 100 | | | B+ : 75 < Final Score ≤ 80 | | | B : 69 < Final Score ≤ 75 | | | C+ : 60 < Final Score ≤ 69 | | | C: 55 < Final Score ≤ 60 | | | D: 50 < Final Score ≤ 55 | | | D : 30 < Final Score ≤ 55 D+ : 44 < Final Score ≤ 50 | | Prerequisite Courses | Reproductive Management and IB | | Learning Outcomes | Learning Outcomes : | | Learning outcomes | Capability to develop knowledge and comprehensive | | | mindset based on Animal science and industry (LO 4) | | | 2. Proficient in biology, physiology, animal nutrition, | | | | | | breeding, farm management, and implementation in Animal Science (LO6) | | | · · · | | | 3. Actively contributing in the learning process and | | | discussion (LO 10) | | | 4. Capability to ethically design and perform experiments, | | | analyze and interpret data as to provide sustainable | | | problem solving in Animal Science (LO 12) | | | Course Learning Outcomes: | | | After completing this course students are able to: | | | 1. Implement the basic principles of animal breeding | | | including genetic parameters, selection, genetic progress, | | | and regulation of the mating system | | | 2. Calculate and analyze animal genetic potential, genetic | | | parameters, and genetic progress due to selection | | | 3. Self-Learn and develop insights in evaluating the | | | implementation of animal breeding programs in Indonesia | | | Objectives: This course encompasses understanding the | | | concept of livestock breeding, qualitative and quantitative | | | traits, estimated geneticparameters (heritability = h2, | | | repeatability = r, genetic correlation = rG), estimation of | | | Breeding Value (BV), Most Probable | | | , ,,, | | | Producing Ability (MPPA), Estimated Real Producing Ability | | | (EDDA) 11 11 11 11 11 11 11 11 11 11 11 11 11 | |-----------------------|--| | | (ERPA), the estimation of the selection response, the | | | correlated response, the method of selecting one trait and | | | more than one trait, and the mating/breeding system | | | Knowledge: Able to explain the basic principles of livestock | | | breeding including genetic parameters, selection, genetic | | | progress and regulation of the breeding system | | | Skills: cognitive- Able to calculate and analyze livestock genetic | | | potential, genetic parameters, and genetic progress due to | | | selection. Phsycomotoric-Students are | | | Able to learn and develop self-learn insights in evaluating the | | | implementation of livestock breeding programs in Indonesia | | | Competences: Understanding the contents Estimation of genetic | | | parameters (heritability, repeatability, genetic correlation), | | | Estimation of BV, MPPA, and ERPA, Estimation of selection | | | response and correlated responses, The method of selecting | | | <u> </u> | | | one trait and more than one trait, Mating system (Inbreeding | | Learning Content | and Outbreeding) | | Learning Content | The topics are: | | | 1. INTRODUCTION | | | 2. Estimation of genetic parameters (heritability, | | | repeatability, genetic correlation) | | | 3. Estimation of BV, MPPA, and ERPA | | | 4. Estimation of selection response and correlated | | | responses | | | 5. The method of selecting one trait and more than one | | | trait | | | 6. Mating system (Inbreeding and Outbreeding) | | Study and examination | - Attendance >80% | | requirements | The final score of all the components of the PBM | | and forms of | evaluation >44 | | examination | The final score component: | | | - 30% Midterm Exam | | | - 30% Final Exam | | | - 20% Practicu | | | - 10% Structured Assignments | | | - 10% Quiz | | | | | | A:80 < Final Score ≤ 100 | | | B+: 75 < Final Score ≤ 80 | | | B: 69 < Final Score ≤ 75 | | | C+ : 60 < Final Score ≤ 69 | | | C:55 < Final Score ≤ 60 | | | D: 50 < Final Score ≤ 55 | | | D+: 44 < Final Score ≤ 50 | | Test Terms and Forms | Examination requirements: A minimum of 80% attendance | | | to attend the final exam | | • | | | | Forms of examination: | |----------------|---| | | Multiple choices and Essay | | Learning Media | Projector and screen, Zoom application, Google Classroom, e- | | | book, WA Group | | References | 1. Falconer, DS. Introduction to Quantitative Genetics. 1989. Longman Scientific & Technical. New York. | | | 2. Ciptadi, G. A. Budiarto, Aulani'am, Y Oktanella. 2019. | | | Genetika dan Pemuliaan : Peternakan-Veteriner. UB Press. | | | Malang. ISBN 978-602-432-950-1. | | | 3. Hakim, L. 2011. Dasar Pemuliaan Ternak. Darkah Media | | | Malang. ISBN: 978-602-96331-5-3. | | | 4. Hardjosubroto, W. 1994. Aplikasi Pemuliabiakan Ternak di | | | Lapangan. PT Gramedia Widiasarana Indonesia. Jakarta. | | | 5. Lasley, J.F. 1978. Genetics of Livestock Improvement. 3 | | | eds. Prentice-Hall of India, Private Ltd, New Delhi. | | | 6. Maylinda, S. 2010. Buku Pengantar Pemuliaan Ternak. UB Press. Malang. | | | 7. Nurgiartiningsih, V. M. A. 2017. Pengantar Parameter | | | Genetik pada Ternak. UB Press, Malang. ISBN:978-602- | | | 432-331-8. | | | 8. Udo, H. 1992. Ruminant Breeding Strategies for the | | | Tropics. Wageningen Agricultural University. The | | | Netherlands. | | | 9. Warwick, E. J., M. Astuti, and W. Hardjosubroto. 1990. | | | Pernuliaan Ternak. Gadjah Mada University Press. | | | Yogyakarta. |