Course Module Departement of Animal Science Faculty of Animal Science Universitas Brawijaya | Module Name | Miscellaneous Animal Technology | |---|---| | Module Level | Undergraduate Study Program of Animal Science | | Code | PEP60012 | | Subtitle | - | | Courses | Miscellaneous Animal Technology | | Semester (s) | 6 | | Person responsible for the module | - | | Lecturer | 1. Dr. Ir. Sri Minarti, MP, IPM, Asean Eng | | | 2. Prof. Dr. Ir. Moch. Junus, MS | | | 3. Ir. Nur Cholis, M.Si, IPM, Asean Eng | | Language | Combination (Indonesian language and English) | | Relation to curriculum | Study Program: Animal Science | | | Specialization: Animal Production | | | Type: Compulsory/Non-Compulsory | | Type of Teaching contact hours | Contact hours and class size separately for each teaching method: | | | lecture, lesson, project, practical etc. | | Workload | Courses: 90,67 hours/semester | | | Practical: 1,70 hours/semester | | Credit Weight | 3 credits or 5.1 (ECTS) | | Requirements according to the examination regulations | - | | Recommended prerequisites | - | | Requirements for Passing the | - | | Course | | | Prerequisite Course | Various Animal Production Science | | Learning Outcomes | Learning Outcomes: | | | Capability to develop knowledge and comprehensive | | | mindset based on Animal science and industry (LO 4) | | | Capability to analyse the development and | | | implementation of technology through humanities, | | | ethical and scientific value as to provide appropriate | | | solutions and ideas (LO 5) | | | 3. Capability to implement technology in Animal Science | | | to increase productivity, efficiency, quality and | | | sustainability based on breeding, nutrition, | | | processing, management as well as to organize an | | | entrepreneurship concept and a sustainable | | | production system (lo 13) | | | Course Learning Outcomes: Students are able to develop technology in various animal production systems Students are able to apply technology in various animal production systems Able to evaluate the role of technology in various animal production systems | |---|---| | | Objectives: The course discusses technology in the development of various animal commodities including design, application, and evaluation which are given in the form of offline learning, discussions, practicum, assignments, or presentations | | | Knowledge: Able to determine technology in various animal production systems | | | Skills: cognitive- Able to apply technology in various animal production systems. Phsycomotoric-Students are Able to evaluate the role of technology in various animal production systems | | | Competences: Able to design Animal Production System Development Technology of Rabbits, Production System Development Technology of Honey Bees, Production System Development Technology of Silkworms | | Learning Content | Learning content include: 1. Animal Production System Development Technology of Rabbits 2. Production System Development Technology of Honey Bees 3. Production System Development Technology of Silkworms | | Study and examination requirements and forms of examination | Attendance >80% The final score of all the components of the PBM evaluation >44 The final score component: 30% Midterm Exam 30% Final Exam 20% Practicu 10% Structured Assignments 10% Quiz | | | A: 80 < Final Score ≤ 100 B+: 75 < Final Score ≤ 80 B: 69 < Final Score ≤ 75 C+: 60 < Final Score ≤ 69 C: 55 < Final Score ≤ 60 D: 50 < Final Score ≤ 55 D+: 44 < Final Score ≤ 50 | | Table Tables and Facility | 5 | |---------------------------|--| | Test Terms and Forms | Examination requirements: A minimum of 80% attendance to | | | attend Final Exam | | | Forms of the test: | | | Multiple Choices and Essays | | Learning Media | Projector and screens, Zoom application, Google Classroom, | | | e-book, WA Group | | References | USAID, 2014. A Complete Handbook on Backyard and
Commercial Rabbit Production. The Keystone Policy Centre
on Behalf of The Honey Bee Health Coalition. Canadian Honey Council, 2019. Best Management
Practices for Hive Health "A Guide for Beekeeper". The
Keystone Policy Centre on Behalf of The Honey Bee Health
Coalition. | | | Imtiyaz Rasool Parrey, Yasir Arafat Lone, 2018. Impact of temperature on crop and higher silk production: silkworm (Bombyx mori L.). MOJ Food Processing & Technology, Volume 6 Issue 2. Sekarappa BM, Gururaj CS. Management of silkworm rearing during summer. Indian Silk. 2008; 27(12):16. |