

Course Module Departement of Animal Science Faculty of Animal Science Universitas Brawijaya

Module Name	Reproduction Technology
Module Level	Undergraduate Study Program of Animal Science
Code	PEP60020
Subtitle	-
Courses	Reproduction Technology
Semester (s)	6
Person responsible for the module	-
Lecturer	1. Prof. Dr.Ir .Trinil Susilawati, MS, IPU, ASEAN Eng
	2. Prof. Dr. Agr. Ir. Suyadi, MS, IPU, ASEAN Eng
	3. Prof. Dr.Ir. Muhammad Nur Ihsan, MS
	4. Prof. Dr.Ir. Woro busono,MS
	5. Prof. Dr.Ir. Nurul Isnaini ,MP
	6. Prof. Dr.Ir. Sri Wahyuningsih ,Msi
	7. Dr.Achadiyah Rachmawati,Spt,MP
	8. Aulia Puspita Anugra Yekti,Spt,MP,Msc
Language	Bahasa Indonesia, English
Relation to curriculum	Study Program: Animal Science
	Specialization: Animal Science
	Type: Compulsory/Non-Compulsory
Type of Teaching contact hours	Contact hours and class size separately for each teaching
	method: lecture, lesson, project, practical etc.
Workload	Courses : 90,67 hours/semester
	Practical : 1,70 hours/semester
Credit Weight	3 credits or 5.1 (ECTS)
Requirements according to the	-
examination regulations	
Recommended prerequisites	-
Requirements for Passing the Course	-
Prerequisite Courses	Reproductive Management and AI
Learning Outcomes	Learning Outcomes :
	1. Capability to analyse the development and
	implementation of technology through humanities,
	ethical and scientific value as to provide appropriate
	solutions and ideas (LO5)
	2. Capability to develop knowledge and comprehensive
	mindset based on Animal science and industry (LO4)

3. Capability to ethically design and perform experiments, analyze and interpret data as to provide sustainable problem solving in Animal Science (LO12)
 Course Learning Outcomes : After completing this course students are able to: 1. Understand the reproductive technology in animals that have been developed today and in the future 2. Understand the role of reproductive technology in improving animal genetic quality and productivity 2. Know and understand the basic principles and applications of spermatozoa and embryo sexing techniques, embryo transfer, in vitro fertilization, embryo manipulation (cloning), chimeras, transgenic, and embryonic stem cells. 3. Apply the principles of gamete and embryo manipulation techniques properly 4. Prepare research students in the field of animal reproduction
Objectives: This course begins with Sexing technology then embryo transfer that includes estrus synchronization, multiple ovulation/ super ovulation, in vivo fertilization, in vitro fertilization, embryo manipulation, cloning, nuclear transfer and application of reproductive technology. Besides, students are required to attend practicum to achieve competence regarding gamete and embryo manipulation techniques and research in the field of livestock reproduction
Knowledge: Understanding about livestock reproductive technology that have developed for current and future, Understanding the role of reproductive technology in improving the genetic quality of livestock and livestock productivity, Knowing and understanding the basic principles and applications of spermatozoa and embryo sexing techniques, embryo transfer, in vitro fertilization, embryo manipulation (cloning), chimeras, transgenic and embryonic steam cells
embryo manipulation techniques correctly. Phsycomotoric Student prepare for research in the field of livestock reproduction
Competences: Able to Sexing of spermatozoa and embryo, Embryo Transfer, Synchronization of estrus, superovulation, and artificial insemination, Collection technique and evaluation of embryo quality, In vitro oocyte maturation technology and in vitro fertilization technique, ELISA, RIA, and USG technology for detection of pregnancy and reproductive disorders, Embryo manipulation

	technology, Reproductive technology application strategy
	in smallholder farms and animal industry.
Learning Content	The topics include:
	1. Introduction
	• The sciences that need to be learned to make it
	easier to learn the course of reproductive
	technology
	 Relationship between the course of reproductive
	technology and other sciences
	 Scope of the course of reproductive technology and
	its relationship in improving the genetic quality of
	animals
	 Recent developments in the reproductive
	technology of animals
	2. Sexing of spermatozoa and embryo:
	 Definition and Basis of Sexing of Spermatozoa and
	Embryo
	 Spermatozoa sexing techniques
	 Sexing Using the Percoll Density Gradient
	Centrifugation (SGDP) Method
	 Sexing Using the Sephadex Filtration Method
	 Sexing Using Egg White Sendimentation Method
	 Sexing Method in Embryo
	Sexing Method in Chickens
	3. Embryo Transfer
	 Definition, advantages, and disadvantages of
	embryo transfer
	 History of embryo transfer
	 Selection of the donor parent and recipient
	 Stages of Embryo Transfer
	 Synchronization of estrus, superovulation, and artificial insemination
	 The synchronization mechanism of estrus
	 Techniques using various hormones to synchronize estrus
	Multiple Ovulation Principles
	 Multiple Ovulation Technique using GnRH
	Multiple Ovulation Technique Using FSH and LH
	Multiple Ovulation Technique Using PMSG and HCG
	Artificial insemination for donors
	5. Collection technique and evaluation of embryo quality
	 Surgical Method Embryo Collection
	Non-Surgical Method Embryo Collection

	Embryo Quality Evaluation
e	5. Embryo Transfer Technique
	Embryo Transfer Technique
	Problems and Obstacles
	Embryo Transfer Method
	Implementation of Embryo Transfer
7	7. Implementation of Embryo Transfer
	 Preparation of Embryo Transfer
	 Implementation of embryo transfer in the field
	Factors Affecting the Success of TE
8	3. In vitro oocyte maturation technology and in vitro
	fertilization technique
	 Purposes and Principles of in vitro Oocvte
	Maturation
	 In Vitro Oocyte Maturation Stages
	Benefits of IVF in Animals
	Preparation of Spermatozoa
	Implementation of IVF
	Post IVF Embryo Culture
c.	Oocyte and Embryo Cryopreservation
	 Objectives and Methods of Oocyte/Embryo
	Cryopreservation
	 Factors Affecting Oocyte and Embryo
	Cryopreservation Results
	Oocyte Cryopreservation
	Embryo Cryopreservation
	 Stages of Oocyte and Embryo Cryopreservation
	IO FUSA BIA and USG tochnology for detection of
L	nregnancy and reproductive disorders
	Principles of Elisa RIA and Ultrasound Technology
	for programcy detection
	EUSA technology
	BIA technology
	 Fliss and Ria Technology Application for Programmy
	and Reproductive Problems Examination
	 Itilization of ultrasound for Pregnancy and
	Reproductive Problems Examination
	Reproductive Froblems Examination
1	11. Embryo manipulation technology
	Cloning (Definition, Objectives, Techniques,
	Strengths, and Weaknesses)

	 12. Embryo manipulation technology Intra Cytoplasmic Sperm Injection (ICSI) (Definition, Purposes, Techniques, Strengths, and weaknesses) Chimera (Definition, Purposes, Techniques, Strengths, and weaknesses) Types and Examples of Chimera Technologies
	 Strategy in smallholder farms and animal industry Determination of Reproductive Technology Application of Artificial Insemination Technology Embryo Transfer Application
	14. Examples of research in the field of animal reproduction
Study and examination requirements and forms of examination	 Attendance >80% The final score of all the components of the PBM evaluation >44 The final score component: 30% Midterm Exam 30% Final Exam 20% Practicu 10% Structured Assignments 10% Quiz A : 80 < Final Score ≤ 100 B+ : 75 < Final Score ≤ 100 B+ : 75 < Final Score ≤ 80 B : 69 < Final Score ≤ 75 C+ : 60 < Final Score ≤ 69 C : 55 < Final Score ≤ 60 D : 50 < Final Score ≤ 55 D+ : 44 < Final Score ≤ 50
Test Terms and Forms	Examination requirements: A minimum of 80% attendance to attend the final exam Forms of examination: Multiple choices and Essay
Learning Media	Projector and screen, Zoom application, Google Classroom, e-book, WA Group
References	 Textbooks of Reproductive Technology (Sri Wahjuningsih, et al., 2019) Farm Animal Reproduction (Hafez and Hafez, 2000)