COURSE LEARNING PLAN UNIVERSITY OF BRAWIJAYA FACULTY OF ANIMAL SCIENCE DEPARTMENT OF ANIMAL SCIENCE UNDERGRADUATE STUDY PROGRAM OF ANIMAL SCIENCE LESSON PLAN: ANIMAL WASTE MANAGEMENT | Course | | Code | Weight (credits) | | Semester | Compilation Date | | |------------------------|--|--|--|--|--|--|--| | Farm Waster Management | | | 3 (2-1) credits | | 6 | January 14, 2020 | | | Authorization | | Supervising Lecturer | | Head of Undergraduate Study
Program | Vice Dean 1 | | | | | | Ir. Nurcholis, Msi. | IPM.ASEAN ENG. Dr. Herly Evanuarini, S.Pt. MP. | | Dr. Herly Evanuarini, S.Pt. MP. | Dr. Halim Natsir, S.Pt. MP. IPM.ASEAN ENG. | | | Learning Outcomes | LO | | | | | | | | | 1. LC | 5: Able to study the in | mplications of deve | lopment c | r the implementation of science and | technology that consider and apply | | | | th | e value of humanities | in accordance with | the exper | tise based on scientific principles, pro | ocedures, and ethics to produce | | | (LO) | ex | cellent solutions and i | deas | | | | | | | 2. LC | 12: Able to design an | d carry out experim | nents, ana | lyze, and interpret data to make corr | ect decisions in solving problems in the | | | | _ | ld of animal science. | | | | | | | | | | | | ted towards improving production, e | | | | | | - | | _ | | keting management, and organizing a | | | | su | stainable animal prodi | uction system, and | applying e | ntrepreneurial concepts. | | | | | CLO | | | | | | | | | Students a | re able: | | | | | | | | 1. St | udents understand the | e basic knowledge a | bout anim | nal waste, including types, benefits, a | nd processing technology. | | | | 2. St | udents master basic so | cience in animal was | ste manag | ement, including biochemistry and m | nicrobiology | | | | 3. Students master animal waste processing technology, including biogas and composting | | | | | | | | | | γ | | | | | | | | Liquid Biogas industry) 5. Students understand business opportunities in the field of animal waste management | | | | | | | | | | tudents understand business opportunities in the field of animal waste management
tudents master integrated animal waste management technology on an industrial scale | | | | | | | | 0. 30 | active master mitegra | tea ammar waste m | anageme | it teemiology on an industrial scale | | | | Brief Course Description | This course discusses the science and knowledge about animal waste, waste management technology, basics in the development of industry-based animal waste management, business opportunities in the field of animal waste management, and integrated animal waste management technology on an industrial scale. | |--------------------------|---| | Learning Content | Introduction: Basic knowledge (Types, Benefits, and Processing technology) Basic science: Fermentation (biochemistry), microbiology in waste management processes Animal waste management technology: Biogas and compost Industry-based animal waste management: Organic fertilizer industry, Liquid Biogas industry Business opportunities from animal waste management products | | | | 6. Ind | ustrial system: Integrat | ed System of | f Animal Waste | e Management | | | |--|---|--------------|--|--|----------------------|--------------------------|-------------------------------------|---------------------------------| | References | Kaharudin dan Sukmawati, 2010. Petunjuk Praktis; Manajemen Umum Limbah Ternak untuk Kompos dan Biogas. Balai Penelitian dan Pengembangan Pertanian. Balai Besar Pengkajian Pengembangan Teknologi Pertanian. Balai Pengkajian Teknologi Pertanian NTB. Kementerian Pertanian Setiasih, 2011. Membuat Dekomposer Dari Bahan Lokal. Balai Pengkajian Teknologi Pertanian Jawa Timur. Athena Lee Bradley. 2008. Manure Management for Small and Hobby Farms. Northeast Recycling Council, Inc. | | | | | | | ian. Balai Pengkajian
Timur. | | | | Software | · | | Hardware | · | | | | Learning Media | | Sketch-up | , Corel Draw | | Miniature of Bin | Biogas Digester, Compost | | | | Teaching Team 1. Nur Chol 2. Heni Set 3. Ita Wahj 4. Moch. Ju 5. Dyah Les | | | tyo Prayogi
ju N
unus | | | | | | | Pre-requisite Cou | rses | Biology an | d Biochemistry | | | | | | | Week (s) | Sub-C
Lear
Outco
(SC | ning
omes | Indicators | | arning
ial/topics | Learning Methods | Criteria &
Form of
Assessment | Weighted scores (%) | | (1) | | (2) | (3) | | (4) | (5) | (6) | (7) | | 1 | С | LO 1 | Able to explain the types, benefits, and | Basic Know
Animal Was | • | Lecture, Discussion | Active participation | | | | | | processing technology | - Renefits | | | | | | 2 | С | LO 2 | Able to explain about animal waster biochemistry Able to explain about animal | Basic Science Waste - Biocher - Fermen | • | Lecture, Discussion | | | | | | waste
fermentation | | | | | |---|-------|--|---|---------------------|--------------|----| | 3 | CLO 2 | Able to explain the microbiology of animal waste | Basic Science of Animal Waste - Microbiology of Animal Waste Management | Lecture, Discussion | Written test | 5% | | 4 | CLO 3 | | Animal Waste | Lecture, discussions, | | | |---|--------------|---------------------|--|-----------------------|-----------|-----| | | 020 0 | Understand and able | Management Technology | and practicum | | | | | | to explain the | (Biogas) | | | | | | | principle of the | Principle of the | | | | | | | formation of | Formation of | | | | | | | methane gas (CH4) | Methane Gas (CH4) | | | | | 5 | CLO 3 | Able to design and | Animal Waste | Lecture, discussions, | | | | | | construct biogas | Management Technology | and practicum | | | | | | digesters | (Biogas) | | | | | | | | Types and Forms of | | | | | | | | Digester | | | | | | | | Digester Design and | | | | | | | | Construction | | | | | 6 | CLO 3 | Understand and able | | Lecture, discussions, | | | | | | to explain the | Animal Waste | and practicum | | | | | | principle of | Management Technology | | | | | | | composting | (Composting) | | | | | | | | Composting Principle | | | | | 7 | CLO 3 | | Animal Waste | Lecture, discussions, | Practicum | 20% | | | | Able to practice | Management Technology | and practicum | | | | | | composting | (Composting) | | | | | | | | Compost Utilization | | | | | | | | (Plant Fertilizer, | | | | | | | | Media containing | | | | | | | | worm, | | | | | | | | Fungal Growth | | | | | | | | Media) | | | | | 8 | MIDTERM EXAM | T | | | _ | 30% | | 9 | CLO 4 | Able to explain | | Lecture, Discussion | | | | | | organic fertilizer | | | | | | | | waste management | Industry-Based Animal | | | | | | | technology on an | Waste Management | | | | | | | industrial scale | Organic Fertilizer | | | | | | | | Industry | | | | | 10 | CLO 4 | Able to explain biogas liquid waste management technology on an industrial scale | Industry-Based Animal
Livestock Waste
Management
– Liquid Biogas Industry | Lecture, Discussion | | | |----|-------|---|--|---------------------|-----------------------|--| | 11 | CLO 5 | Able to analyze the biogas liquid waste management industry | Business Opportunities
from Animal Waste
Management Products
– A Case Study of
Liquid Biogas Industry | Lecture, Discussion | Group
Presentation | | | 12 | CLO 5 | Able to analyze the organic fertilizer and vermicompost management industry | Business Opportunities from Animal Waste Management Products - A Case Study of Organic Fertilizer Industry - A Case Study of the Vermicompost Industry | Lecture, Discussion | Group
Presentation | | | 13 | CLO 5 | Able to analyze starter/decompose industry and mushroom cultivation | Business Opportunities from Animal Waste Management Products - Starter/Decomposer Industry - A Case Study of Mushroom Industry | Lecture, Discussion | Group
Presentation | | | 14 | CLO 6 | Able to analyze animal waste management technology integrated with non-ruminant livestock farming | Integrated System of Animal Waste Management - A Case Study of non- ruminant Farming Business | Lecture, Discussion | Group
Presentation | | | 15 | CLO 6 | | | Lecture, Discussion | Group | 5% | |----|------------|--------------------|-------------------------------------|---------------------|--------------|------| | | | Able to analyze | | | Presentation | | | | | animal waste | Integrated System of | | | | | | | management | Animal Waste | | | | | | | technology | Management | | | | | | | integrated with | A Case Study of | | | | | | | ruminant livestock | Ruminant Farming | | | | | | | farming | Business | | | | | 16 | FINAL EXAM | | | | | 30% | | | TOTAL | | | | | 100% |